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Abstract - In the last two decades, many efficient 
algorithms and architectures have been introduced for the 
design of low complexity bit-parallel multiple constant 
multiplications (MCM) operation which increases the 
complexity of many digital signal processing systems. Multiple 
constant multiplication (MCM) is an efficient way of 
implementing several constant multiplications with the same 
input data. The coefficients are expressed using shifts, adders, 
and subtracters. On the other hand, little attention has been 
given to the digit-serial MCM design that offers alternative low 
complexity MCM operations. In this paper, we address the 
problem of optimizing the gate-level area in digit-serial MCM 
designs. 
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1.  INTRODUCTION  
 

Finite impulse response (FIR) filters are of great importance 
in digital signal processing (DSP) systems since their 
characteristics in linear-phase and feed-forward 
implementations make them very useful for building stable 
high-performance filters. The direct and transposed-form 
FIR filter implementations are there, respectively. Although 
both architectures have similar complexity in hardware, the 
transposed form is generally preferred because of its higher 
performance and power efficiency .The multiplier block of 
the digital FIR filter in its transposed form, where the 
multiplication of filter coefficients with the filter input is 
realized, has significant impact on the complexity and 
performance of the design because a large number of 
constant multiplications are required. This is generally 
known as the multiple constant multiplications (MCM) 
operation and is also a central operation and performance 
bottle neck in many other DSP systems such as fast Fourier 
transforms, discrete cosine  
 
 
 

  

2.  LITERATURE REVIEW 
 

2.1 “Low-Cost FIR Filter Designs Based on Faithfully 
Rounded Truncated Multiple Constant 
Multiplication/Accumulation” 
 
 A generic flow of FIR filter design and implementation 
can be divided into three stages: finding filter order and 
coefficients, coefficient quantization, and hardware 
optimization, as shown in Fig. 1 
 

 
  
 
Fig -1: Three stages in FIR  design 
 
 In the first stage, the filter order and the corresponding 
coefficients of infinite precision are determined to satisfy the 
specification of the frequency response. Then, the 
coefficients are quantized to finite bit accuracy. Finally, 
various optimization approaches such as CSE are used to 
minimize the area cost of hardwareplementations. Most 
prior FIR filter implementations focus on the hardware 
optimization stage After FIR filter perations, the output 
signals have larger bit width due to bit width expansion after 
multiplications. In many practical situations, only partial bits 
of the full-precision outputs are needed. For example, 
assuming that the input signals of the FIR filter have 12 bits 
and the filter coefficients are quantized to 10 bits, the bit 
width of the resultant FIR filter output signals is at least 22 
bits, but we might need only the 12 most significant bits for 
subsequent processing. In this brief, we adopt the direct FIR 
structure with MCMA because the area cost of the flip-flops 
in the delay elements is smaller compared with that of the 
transposed form. Furthermore, we jointly consider the three 
design stages in Fig. 1 in order to achieve more efficient 
hardware design with faithfully rounded output signals. 
Unlike conventional uniform quantization of filter 
coefficients with equal bit width, the nonuniform 
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quantization technique with possibly different bit widths is 
adopted in this brief. 
 Initially, subroutine Parks McClellan () is used to find the 
filter order M for the given frequency response. Then, we 
quantize the coefficients with enough bits and generate the 
set of uniformly quantized coefficients ai with equal bit 
width B. The subroutine freq_resp_satisfied () checks if the 
frequency response is still satisfied after quantization. After 
coefficient quantization, we perform recoding to minimize 
the number of nonzero digits. In this brief, we consider CSD 
recoding with digit set of {0, 1,−1} and radix-4 modified 
Booth recoding with digit set of {0, 1,−1, 2,−2} and select the 
one that results in smaller area cost. While most FIR filter 
designs use minimum filter order, we observe that it is 
possible to minimize the total area by slightly increasing the 
filter order. Therefore, the total area of the FIR filter is 
estimated using the subroutine area_cost_estimate() using 
the approach in [20]. Indeed, the total number of PPBs in the 
MCMA is directly proportional to the number of FA cells 
required in the PPB compression because a FA reduces one 
PPB. After Step 1 of uniform quantization and filter order 
optimization, the non-uniform quantization in Step 2 
gradually reduces the bit width of each coefficient until the 
frequency response is no longer satisfied. Finally, we fine-
tune the non-uniformly quantized coefficients by adding or 
subtracting the weighting of LSB of each coefficient and 
check if further bit width reduction is possible. Using the 
algorithm, we can find the filter order M and the non-
uniformly quantized coefficients that lead to minimized area 
cost in the FIR filter implementation. 
 

2.2”A Computer Program for Designing Optimum 
FIR Linear Phase Digital Filters” 
 
2.3 “Multiple Constant Multiplication for Digit-
Serial 
Implementation of Low Power FIR Filters” 
 
In the n-dimensional Reduced Adder Graph (RAG-n) 
algorithm was introduced. This algorithm is known to be one 
of the best MCM algorithms in terms of number of adders. 
Based on this algorithm an n-dimensional Reduced Shift and 
Add Graph (RSAG-n) algorithm has been developed [10] that 
not only tries to minimize the adder cost, but also the 
number of shifts. However, this algorithm has an increased 
adder cost, which will be dominating for larger digit-sizes 
Here, an n-dimensional Reduced Add and Shift Graph (RASG-
n) algorithm is proposed. The new algorithm is a hybrid of 
the RAG-n and RSAG-n algorithms. RASG-n work with odd 
coefficients, like RAG-n and only realizes one coefficient in 
each iteration, like RSAG-n. When it is possible to realize 
more than one coefficient RASG-n selects the one that 
require the lowest number of additional shifts. This makes it 
possible for RASG-n to minimize both the number of adders 
and shifts in an effective way. These algorithms are graph 
based. Node values are referred to as fundamentals. Realized 

coefficients are removed from the coefficient set and added 
to an interconnection table that specifies how the value is 
obtained. 
The termination condition of the algorithm is that the 
coefficient set is empty. The steps in the RSAG-n algorithm 
are; 
 
1. Divide even coefficients by two until odd, and save the 
number of times each coefficient is divided. These shifts at 
the outputs can be considered to be free when other 
coefficients are synthesized. 
2. Remove zeros, ones, i.e., coefficients which corresponds 
to a power-of-two, and repeated coefficients from the 
coefficient set. 
3. Compute the single-coefficient adder cost for each 
coefficient, which is done by using a look-up table. 
4. Compute a sum matrix based on power-of-two multiples 
of the fundamental values included in the interconnection 
table. At start this matrix is and is then extended when new 
fundamentals are added. If any required coefficients are 
found in the matrix, compute the required number of shifts. 
Find the coefficients which require the lowest number of 
additional shifts, and select the smallest of those. Add this 
coefficient to the interconnection table and remove it from 
the coefficient set. 
5. Repeat step 4 until no required coefficient is found 
in the sum matrix. 
6. For each remaining coefficient, check if it can be obtained 
by the strategies. For both cases two new adders are 
required. If any coefficients are found, select the smallest 
coefficient 
of those which require the lowest number of additional 
shifts. Add this coefficient and the extra fundamental to the 
interconnection table. Remove the coefficient from the 
coefficient set. 
7. Repeat step 5 and 6 until no required coefficient is found. 
8. Choose the smallest coefficient with lowest single 
coefficient adder cost. Different sets of fundamentals that 
can be used to realize the coefficient are obtained from a 
look-up-table. For each set, remove fundamentals that are 
already included in the interconnection table and compute 
the required number of shifts. Find the sets which require 
the lowest number of additional shifts, and of those, select 
the set with smallest sum. Add this set and the coefficient to 
the interconnection table. Remove the coefficient from the 
coefficient set. 
 

3. EXISTING SYSTEM 
 
The direct and transposed-form FIR filter implementations 
are illustrated in Fig.2(a) and (b), respectively. Although 
both architectures have similar complexity in hardware, the 
transposed form is generally preferred because of its higher 
performance and power efficiency. The multiplier block of 
the digital FIR filter in its transposed form [Fig.2 (b)], where 
the multiplication of filter coefficients with the filter input is 
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realized, has significant impact on the complexity and 
performance of the design because a large number of 
constant multiplications are required. This is generally 
known as the multiple constant multiplications (MCM) 
operation and is also a central operation and performance 
bottleneck in many other DSP systems such as fast Fourier 
transforms, discrete cosine transforms (DCTs), and error-
orrecting codes.  
 

 
Fig -2: FIR filters implementations. (a) Direct form. (b) 
Transposed form with generic multipliers. (c) 
Transposed form with an MCM    block. 
 
 

 
  
Fig.-3: Shift-adds implementations of 29x and 43x. (a) 
Without partial product sharing and with partial 
product sharing. (b) Exact CSE algorithm. (c) Exact GB 
algorithm 
. 
However, the digit-based recoding technique does not 
exploit the sharing of common partial products, which 
allows great reductions in the number of operations and, 
consequently, in area and power dissipation of the MCM 
design at the gate level. Hence, the fundamental optimization 
problem, called the MCM problem, is defined as finding the 

minimum number of addition and subtraction operations 
that implement the constant multiplications. Note that, in 
bit-parallel design of constant multiplications, shifts can be 
realized using only wires in hardware without representing 
any area cost. The algorithms designed for the MCM problem 
can be categorized in two classes: common sub expression 
elimination (CSE) algorithms and graph-based (GB) 
techniques.  
The CSE algorithms initially extract all possible sub 
expressions from the representations of the constants when 
they are defined under binary, canonical signed digit (CSD), 
or minimal signed digit (MSD). Then, they find the “best” sub 
expression, generally the most common, to be shared among 
the constant multiplications. The GB methods are not limited 
to any particular number representation and consider a 
larger number of alternative implementations of a constant, 
yielding better solutions than the CSE algorithms. Returning 
to our example in Fig.3, the exact CSE algorithm of gives a 
solution with four operations by finding the most common 
partial products 3x = (11) binx and 5x = (101) binx when 
constants are defined under binary, as illustrated in Fig. 2(b). 
On the other hand, the exact GB algorithm finds a solution 
with the minimum number of operations by sharing the 
common partial product 7x in both multiplications, as shown 
in Fig.3 (c). Note that the partial product 7x = (111) binx 
cannot be extracted from the binary representation of 43x in 
the exact CSE algorithm.  
However, all these algorithms assume that the input data x is 
processed in parallel. On the other hand, in digit-serial 
arithmetic, the data words are divided into digit sets, 
consisting of d bits that are processed one at a time. Since 
digit serial operators occupy less area and are independent 
of the data word length, digit-serial architectures offer 
alternative low complexity designs when compared to bit-
parallel architectures. However, the shifts require the use of 
D flip-flops, as opposed to the bit-parallel MCM design where 
they are free in terms of hardware. Hence, the high-level 
algorithms should take into account the sharing of shift 
operations as well as the sharing of addition/subtraction 
operations in digit-serial MCM design. Furthermore, finding 
the minimum number of operations realizing an MCM 
operation does not always yield an MCM design with optimal 
area at the gate level. Hence, the high-level algorithms 
should consider the implementation cost of each digit-serial 
operation at the gate level. 
 

4. EXPERIMENTAL RESULTS 
 
The experimental results indicate that the complexity of 
digit-serial mcm designs can be further reduced using the 
high-level optimization algorithms proposed in this paper. 
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Fig -4: Simulated result of shift adds implementation 
 
It was shown that the realization of digit-serial fir filters 
under the shift-adds architecture yields significant area 
reduction when compared to the filter designs whose 
multiplier blocks are implemented using digit-serial constant 
multipliers. It is observed that a designer can find the circuit 
that fits best in an application by changing the digit size. 
 

The shift adds operation for the targets (29x and 
43x) is performed. This implementation produces the 
constants of 29x and 43x and their multiples (i.e.) if the given 
input is 3(00000011), the output of shift adds operation will 
be 87(01010111) and 129(10000001). The same constants 
are implemented using exact CSE algorithm (fig 7.2).  
 

  
 
Fig -5: Simulated result of exact CSE algorithm and GB 
algorithm 
 
In approximate graph base algorithm (GB technique). In 
which, the optimization of gate-level area problem in digit-
serial MCM design is an NP-complete problem due to the NP-
completeness of the MCM problem. Thus, naturally, there 
will be always 0–1 ILP problems generated by the exact CSE 
algorithm that current 0–1 ILP solvers find difficult to 
handle. Hence, the GB heuristic algorithms, which obtain a 
good solution using less computational resources, are 
indispensable. In GB algorithm, the operation is same as the 
CSE algorithm but GB uses less resources than the others. 
Hence, the area and cost size are reduced using this 
algorithm. 
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