ON THE HOMOGENEOUS CONE $z^{2}=53 x^{2}+y^{2}$

J. SHANTHI ${ }^{\mathbf{1}}$, M.A. GOPALAN ${ }^{\mathbf{2}}$, E. DEVISIVASAKTHI ${ }^{\mathbf{3}}$
${ }^{1}$ Assistent professor, Department of Mathematics, SIGC, Affiliated by Bharathidasan University, Trichy, Tamilnadu, India
${ }^{2}$ Professor, Department of Mathematics, SIGC, Affiliated by Bharathidasan University, Trichy, Tamilnadu, India

${ }^{3}$ P.G Scholar, Department of Mathematics, SIGC, Affiliated by Bharahidasan University, Trichy, Tamilnadu, India

Abstract

: The homogeneous ternary quadratic equation given by $z^{2}=53 x^{2}+y^{2}$ is analysed for its non-zero distinct integer solution through different methods. A few interesting properties between the solution are presented. Also, formulae for generating sequence of integer solutions based on the given solutions are presented.

Keywords: Ternary quadratic, Integer solutions, Homogeneous cone.

Notation:

$$
t_{m, n}=n\left[1+\frac{(n-1)(m-2)}{2}\right]
$$

Introduction:

It is well known that the quadratic Diophantine equations with three unknowns (homogeneous or non-homogeneous) are rich in variety [1, 2]. In particular, the ternary quadratic Diophantine equations of the form $z^{2}=D x^{2}+y^{2}$ are analysed for values of $\mathrm{D}=29,41,43,47,61,67$ in [3-8]. In this communication, the homogeneous ternary quadratic Diophantine equation given by $z^{2}=53 x^{2}+y^{2}$ is analysed for its non-zero distinct integer solution through different methods. A few interesting properties between the solutions are presented. Also, formulas for generating sequence of integer solutions based on the given solutions are presented.

International Research Journal of Education and Technology ISSN 2581-7795

METHODS OF ANALYSIS

The ternary quadratic equation to be solved for its integer solutions is

$$
\begin{equation*}
z^{2}=53 x^{2}+y^{2} \tag{1}
\end{equation*}
$$

We present below different methods of solving (1):

Method: 1

(1) Is written in the form of ratio as

$$
\begin{equation*}
\frac{z+y}{53}=\frac{x}{z-y}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{2}
\end{equation*}
$$

which is equivalent to the system of double equations

$$
\begin{aligned}
& 53 \alpha x-\beta y-\beta z=0 \\
& \beta x+\alpha y-\alpha z=0
\end{aligned}
$$

Applying the method of cross-multiplication to the above system of equations, one obtains

$$
\begin{aligned}
& x=x(\alpha, \beta)=2 \alpha \beta \\
& y=y(\alpha, \beta)=53 \alpha^{2}-\beta^{2} \\
& z=z(\alpha, \beta)=53 \alpha^{2}+\beta^{2}
\end{aligned}
$$

Which satisfy (1)

Properties:

- $y(\alpha, 1)-t_{108, \alpha}+1=0$
- $2[y(\alpha, 1)+z(\alpha, 1)]=53 x^{3}(\alpha, 1)$
- $z(\alpha, 1)-t_{108, \alpha}-1=0$
- $\quad y(\alpha, 1)+z(\alpha, 1)=2 t_{108, \alpha}$

Note: 1

It is observed that (1) may also be represented as below:

$$
\frac{z+y}{x}=\frac{53 x}{z-y}=\frac{\alpha}{\beta}, \beta \neq 0
$$

In this case, the corresponding solutions to (1) are given as:

International Research Journal of Education and Technology ISSN 2581-7795

$$
x=2 \alpha \beta, \quad y=\alpha^{2}-53 \beta^{2}, \quad z=\alpha^{2}+53 \beta^{2}
$$

Method: 2

(1) Is written as the system of double equation in Table 1 as follows:

Double \begin{tabular}{|c|c|c|c|}
\hline System \& I \& II \& III

\hline$z+y=$ \& x^{2} \& $53 x^{2}$ \& $53 x$

\hline \& | Table: 1 System of |
| :---: |
| Equations |

\hline$z-y=$ \& 53 \& 1 \& x

\hline
\end{tabular}

Solving each of the above system of double equations, the value of $x, y \& z$ satisfying (1) are obtained. For simplicity and brevity, in what follows, the integer solutions thus obtained are exhibited.

Solutions for system: I

$$
x=2 k+1, \quad y=2 k^{2}+2 k-26, \quad z=2 k^{2}+2 k+27
$$

Solutions for system: II

$$
x=2 k+1, \quad y=106 k^{2}+106 k+26, \quad z=106 k^{2}+106 k+27
$$

Solution for system: III

$$
x=k, \quad y=26 k, \quad z=27 k
$$

Method: 3

$$
\begin{gather*}
\text { Let } z=y+k, k \neq 0 \\
\therefore(1) \Rightarrow 2 k y=53 x^{2}-k^{2} \tag{3}
\end{gather*}
$$

Assume

$$
\begin{equation*}
x=2 k \alpha+k=k(2 \alpha+1) \tag{4}
\end{equation*}
$$

International Research Journal of Education and Technology ISSN 2581-7795

$$
\begin{equation*}
\therefore y=53\left(2 k \alpha^{2}+2 k \alpha\right)+26 k \tag{5}
\end{equation*}
$$

In view of (3)

$$
\begin{equation*}
z=53\left(2 k \alpha^{2}+2 k \alpha\right)+27 k \tag{6}
\end{equation*}
$$

Note that (4), (5), (6) satisfy (1)

Method: 4

(1) Is written as

$$
\begin{equation*}
y^{2}+53 x^{2}=z^{2}=z^{2} * 1 \tag{7}
\end{equation*}
$$

Assume z as

$$
\begin{equation*}
z=a^{2}+53 b^{2} \tag{8}
\end{equation*}
$$

Write 1 as

$$
\begin{equation*}
1=\frac{(22+3 i \sqrt{53})(22-3 i \sqrt{53})}{31^{2}} \tag{9}
\end{equation*}
$$

Using (8) \& (9) in (7) and employing the method of factorization, consider

$$
(y+i \sqrt{53} x)=(a+i \sqrt{53} b)^{2} \cdot \frac{22+3 i \sqrt{53}}{31}
$$

Equating real \& imaginary parts, it is seen that

$$
\left.\begin{array}{l}
x=3\left(a^{2}-53 b^{2}\right)+44 a b \tag{10}\\
y=22\left[a^{2}-53 b^{2}-318 a b\right]
\end{array}\right\}
$$

Since our interest is to find the integer solutions, replacing a by $31 \mathrm{~A} \& b$ by 31 B in (8) \& (10), the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x=x(A, B)=31\left[3 A^{2}-159 B^{2}+44 A B\right] \\
& y=y(A, B)=31\left[22 A^{2}-1166 B^{2}-318 A B\right] \\
& z=z(A, B)=31^{2}\left[A^{2}+53 B^{2}\right]
\end{aligned}
$$

Properties:

- $\frac{5 x(A, 1)}{31}-t_{32, A}=234 A-795$
- $\frac{5 x(A, 1)}{31}-t_{32, A} \equiv 141(\bmod 234)$
- $\frac{5 y(A, 1)}{31}-t_{222, A}=-[1481 A+5830]$
- $\frac{5 y(A, 1)}{31}-t_{222, A} \equiv 94(\bmod 1481)$

Note: 2

In addition to (5), 1 may also be represented as follows

$$
1=\frac{\left[\left(53 r^{2}-s^{2}\right)+i \sqrt{53} \cdot 2 r s\left[\left(53 r^{2}-s^{2}\right)-i \sqrt{53} \cdot 2 r s\right]\right.}{\left(53 r^{2}+s^{2}\right)^{2}}
$$

For the above choice, the corresponding values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ satisfying (1) are given below:

$$
\begin{aligned}
& x=53 r+s^{2}\left[2 r s\left(A^{2}-53 B^{2}\right)+2 A B\left(53 r^{2}-s^{2}\right)\right] \\
& y=\left(53 r^{2}+s^{2}\right)\left[\left(53 r^{2}-s^{2}\right)\left(A^{2}-53 B^{2}\right)-212 A B r s\right] \\
& z=\left(53 r^{2}+s^{2}\right)^{2}\left(A^{2}+53 B^{2}\right)
\end{aligned}
$$

GENERATION OF SOLUTIONS

Different formulas for generating sequence of integer solutions based on the given solution are presented below:

Let $\left(x_{0}, y_{0}, z_{0}\right)$ be any given solution to (1)

Formula: 1

Let $\left(x_{1}, y_{1}, z_{1}\right)$ given by

$$
\begin{equation*}
x_{1}=3 x_{0}, \quad y_{1}=3 y_{0}+h, \quad z_{1}=2 h-3 z_{0} \tag{11}
\end{equation*}
$$

Be the $2^{\text {nd }}$ solution to (1). Using (11) in (1) and simplifying, one obtains

$$
h=2 y_{0}+4 z_{0}
$$

In view of (11), the values of y_{1} and z_{1} are written in the matrix form as

$$
\left(y_{1}, z_{1}\right)^{t}=M\left(y_{0}, z_{0}\right)^{t}
$$

Where

$$
\mathrm{M}=\left(\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right) \text { and } t \text { is the transpose }
$$

The repetition of the above proses leads to the $n^{\text {th }}$ solutions y_{n}, z_{n} given by

$$
\left(y_{n}, z_{n}\right)^{t}=M^{n}\left(y_{0}, z_{0}\right)^{t}
$$

If α, β are the distinct eigen values of M , then

$$
\alpha=1, \beta=9
$$

We know that

$$
M^{n}=\frac{a^{n}}{(\alpha-\beta)}(M-\beta I)+\frac{\beta^{n}}{(\beta-\alpha)}(M-\alpha I), I=2 \times 2 \text { Identity matrix }
$$

Thus, the general formulas for integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=3^{n} x_{0} \\
& y_{n}=\left(\frac{9^{n}+1}{2}\right) y_{0}+\left(\frac{9^{n}-1}{2}\right) z_{0} \\
& z_{n}=\left(\frac{9^{n}-1}{2}\right) y_{0}+\left(\frac{9^{n}+1}{2}\right) z_{0}
\end{aligned}
$$

Formula: 2

Let $\left(x_{1}, y_{1}, z_{1}\right)$ given by

$$
\begin{equation*}
x_{1}=h-54 x_{0}, \quad y_{1}=h-54 y_{0}, \quad z_{1}=54 z_{0} \tag{12}
\end{equation*}
$$

Be the $2^{\text {nd }}$ solution to (1). Using (12) in (1) and simplifying, one obtains

$$
h=106 x_{0}+2 y_{0}
$$

In view of (12), the values of y_{1} and z_{1} is written in the matrix form as

$$
\left(x_{1}, y_{1}\right)^{t}=M\left(x_{0}, y_{0}\right)^{t}
$$

Where

$$
M=\left(\begin{array}{cc}
52 & 2 \\
106 & -52
\end{array}\right) \text { and } t \text { is the transpose }
$$

The repetition of the above process leads to the $n^{t h}$ solutions x_{n}, y_{n} given by

$$
\left(x_{n}, y_{n}\right)^{t}=M^{n}\left(x_{o}, y_{0}\right)^{t}
$$

International Research Journal of Education and Technology
 ISSN 2581-7795

If α, β are the distinct eigen values of M , then

$$
\alpha=54, \beta=-54
$$

Thus, the general formulas for integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=54^{n-1}\left(53+(-1)^{n}\right) x_{0}+54^{n-1}\left(1-(-1)^{n}\right) y_{0} \\
& y_{n}=54^{n-1} \cdot 53\left(1-(-1)^{n}\right) x_{0}+54^{n-1}\left(1-53(-1)^{n}\right) y_{0} \\
& z_{n}=54^{n} z_{o}
\end{aligned}
$$

Formula: 3

Let $\left(x_{1}, y_{1} z_{1}\right)$ given by

$$
\begin{equation*}
x_{1}=h-2 x_{0}, \quad y_{1}=2 y_{0}, \quad z_{1}=2 z_{0}+7 h \tag{13}
\end{equation*}
$$

Be the $2^{\text {nd }}$ solution to (1). Using (13) in (1) and simplifying, one obtains

$$
h=53 x_{0}+7 z_{0}
$$

In view of (13), the values of x_{1} and z_{1} is written in the matrix form as

$$
\left(x_{1}, z_{1}\right)^{t}=M\left(x_{0}, z_{0}\right)^{t}
$$

Where

$$
M=\left(\begin{array}{cc}
51 & 7 \\
371 & 51
\end{array}\right) \text { and } t \text { is the transpose }
$$

The repetition of the above process leads to the $n^{t h}$ solutions x_{n}, y_{n} given by

$$
\left(x_{n}, y_{n}\right)^{t}=M^{n}\left(x_{0}, z_{0}\right)^{t}
$$

If α, β are the distinct eigen values of M , then

$$
\alpha=51+7 \sqrt{53}, \quad \beta=51-7 \sqrt{53}
$$

Thus, the general formulas for integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) x_{0}+\frac{1}{\sqrt{53}}\left(\frac{\alpha^{n}-\beta^{n}}{2}\right) z_{0} \\
& y_{n}=2^{n} y_{0} \\
& z_{n}=\sqrt{53}\left(\frac{\alpha^{n}-\beta^{n}}{2}\right) x_{0}+\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) z_{0}
\end{aligned}
$$

Conclusion:

In this paper, an attempt has been made to obtain non-zero distinct integer solutions to the ternary quadratic Diophantine equation $z^{2}=53 x^{2}+y^{2}$ representing homogeneous cone. As there are varieties of cones, the readers may search for other forms of cones to obtain integer solutions for the corresponding cones.

References:

[1]. L.E. Dickson, History of theory of Numbers, Vol. 2, Chelsea publishing Company, Newyork, 1952.
[2] L.J. Mordel, Diophantine Equations, Academic press, Newyork, 1969.
[3] Gopalan, M.A., Malika, S., Vidhyalakshmi, S., Integer solutions of $61 x^{2}+y^{2}=z^{2}$, International Journal of Innovative science, Engineering and technology, Vol. 1, Issue 7, 271-273, September 2014.
[4] Meena K., Vidhyalakshmi S., Divya, S., Gopalan, M.A., Integer points on the cone $z^{2}=41 x^{2}+y^{2}$, Sch J., Eng. Tech., 2(2B), 301-304, 2014.
[5] Shanthi, J., Gopalan, M.A., Vidhyalakshmi, S., Integer solutions of the ternary, quadratic Diophantine equation $67 X^{2}+Y^{2}=Z^{2}$, paper presented in International conference on Mathematical Methods and Computation, Jamal Mohammed College, Trichy, 2015
[6] Meena, K., Vidhyalakshmi, S., Divya, S., Gopalan M.A., On the ternary quadratic Diophantine equation $29 x^{2}+y^{2}=z^{2}$, International journal of Engineering

Research-online, Vol. 2., Issue.1., 67-71, 2014.
[7] Akila, G., Gopalan, M.A., Vidhyalakshmi, S., Integer solution of $43 x^{2}+y^{2}=z^{2}$, International journal of engineering Research-online, Vol. 1., Issue.4., 70-74, 2013.
[8] Nancy, T., Gopalan, M.A., Vidhyalakshmi, S., On the ternary quadratic Diophantine equation $47 x^{2}+y^{2}=z^{2}$, International journal of Engineering

Research-online, Vol. 1., Issue.4., 51-55, 2013.

International Research Journal of Education and Technology ISSN 2581-7795
[9] Vidyalakshmi, S., Gopalan, M.A., Kiruthika, V., A search on the integer solution to ternary quadratic Diophantine equation $z^{2}=55 x^{2}+y^{2}$, International research journal of modernization in Engineering Technology and Science, Vol. 3., Issue.1, 1145-1150, 2021.
[10] Meena, K., Vidyalakshmi, S., Loganayagi, B., A search on the Integer solution to ternary quadratic Diophantine equation, $z^{2}=63 x^{2}+y^{2}$, International research journal of Education and Technology, Vol. 1, Issue.5, 107-116, 2021.

